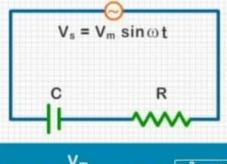
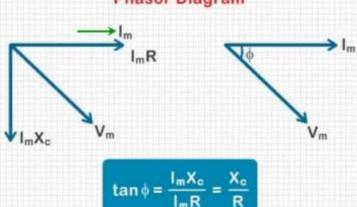


ALTERNATING CURRE


It is the movement of electrical charge through a medium that changes direction periodically

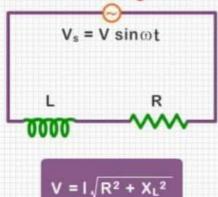
SUMMARY

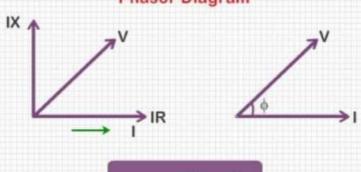
AC SOURCE CONNECTED WITH	PHASE	PHASE DIFFERENCE	IMPEDANCE Z	PHASOR DIAGRAM
Pure Resistor	0	V _R is in same phase with i _R	R	V _m → I _m
Pure Inductor	$\frac{\pi}{2}$	V _L leads i _L by 90°	XL	V _m 1 _m
Pure Capacitor	$-\frac{\pi}{2}$	V _c lags i _c by 90°	Xc	V _m V _m


RC SERIES CIRCUIT WITH AN AC SOURCE

Circuit Diagram

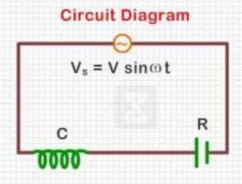
$$I_{m} = -\frac{V_{m}}{\sqrt{R^{2} + X_{c}^{2}}} \Rightarrow Z = \sqrt{R^{2} + X_{c}^{2}}$$

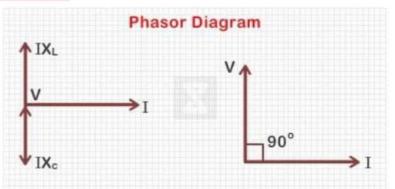

Phasor Diagram


$$\tan \phi = \frac{I_m X_c}{I_m R} = \frac{X_c}{R}$$

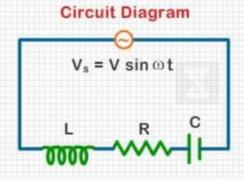
LR SERIES CIRCUIT WITH AN AC SOURCE

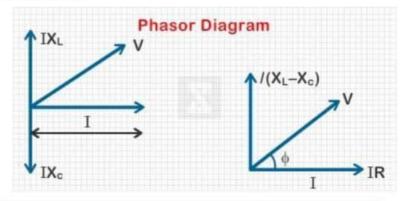
Circuit Diagram



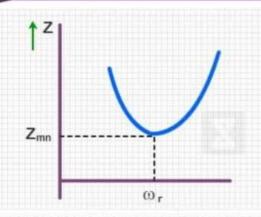

Phasor Diagram

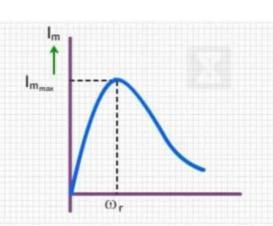
$$\tan \phi = \frac{\mathsf{IX_L}}{\mathsf{IR}} = \frac{\mathsf{X_L}}{\mathsf{R}}$$


LC SERIES CIRCUIT WITH AN AC SOURCE



From the phasor diagram $V = I |(X_L - X_c)| = IZ$, $\phi = 90^\circ$


RLC SERIES CIRCUIT WITH AN AC SOURCE



From the phasor diagram $V = \sqrt{(IR)^2 + (IX_L - IX_c)^2}$, $Z = \sqrt{R^2 + (X_L - X_c)^2}$ $tan\phi = \frac{I(X_L - X_c)}{IR} = \frac{(X_L - X_c)}{R}$

RESONANCE

Amplitude of current (and therefore Irms also) in an RLC series circuit is maximum for a given value of V_m and R, if the impedance of the circuit is minimum, which will be when $X_L-X_C = 0$. This condition is called resonance.

So at resonance:
$$X_L - X_C = 0 \implies \omega = \frac{1}{\sqrt{LC}}$$